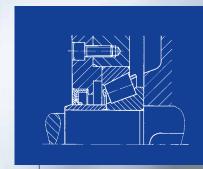


Wellendichtungen mit PTFE-Dichtlippe


Wellendichtungen mit PTFE-Dichtlippe sind einbaufertige Dichtelemente, die durch ihre radiale Pressung auf der Welle Dichtwirkung
erzielen. Die Abdichtung in der Aufnahmebohrung wird durch einen
Presssitz nach ISO 16589-1 erreicht.
Wellendichtungen mit PTFE-Dichtlippe werden vorzugsweise zur Abdichtung von drehenden Wellen
verwendet.

Die erforderliche radiale Anpressung wird durch die Auswahl des PTFE-Compounds, die Gestaltung der Dichtlippe und durch ein spezielles Herstellungsverfahren erreicht.

Zur Abdeckung eines möglichst großen Anwendungsbereiches wurden Standard-Baureihen entwickelt.
Die Bauart HN 2580 wird vorwiegend bei drucklosem Betrieb bzw. gegen geringe Überdrücke, die Bauart HN 2390 bei druckbeaufschlagten Medien eingesetzt.

Vorteile

- Hervorragende chemische Beständigkeit gegen aggressive Medien
- Geeignet für Anwendungen bei hoher thermischer Beanspruchung von –60 °C bis +200 °C
- Einsatz bei Mangelschmierung und Trockenlauf möglich
- Auch für ungehärtete Wellen geeignet
- Hohe Verschleißfestigkeit des Dichtlippenwerkstoffes
- Reibungsoptimierte Bauarten für geringe Verlustleistung
- Geeignet f\u00fcr hohe Umfangsgeschwindigkeiten
- Geringe Losbrechkräfte nach längeren Stillstandszeiten (Stick-Slip-Frei)
- Antiadhäsives Verhalten der Dichtlippe
- Sondertypen f
 ür die Lebensmittelund Pharmaindustrie

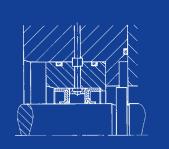
Wellenabdichtung an einem Stirnradgetriebe, Bauart HN 2580.

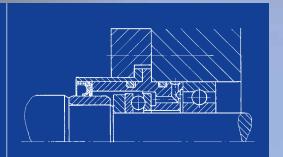
Anwendungsgebiete

Wellendichtungen mit PTFE-Dichtlippe eignen sich zur Abdichtung folgender Medien:

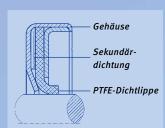
- Mineralische und synthetische Schmierstoffe
- Pharmazeutische Produkte und Lebensmittel (FDA-Empfehlungen für bestimmte PTFE-Compounds)
- Chemieabwasser und Spülwasser
- Aggressive, flüssige und gasförmige Medien
- Pulver und Granulate
- Kühl- und Schmiermittelflüssigkeiten
- Wasser und Dampf
- Harze, Kleber und Pasten
- Luft/Sauerstoff (BAM-Prüfungen für bestimmte PTFE-Compounds)
- Wärmeträgeröle

Typische Anwendungen in


- Rotationsverdichtern
- Schraubenkompressoren
- Getrieben
- Gebläsen
- Mühlen
- Werkzeugmaschinen
- Rührwerken
- Pumpen
- Handhabungsgeräten
- Zentrifugen



Wellenabdichtung an einem Rotationsverdichter mit Öldrainage, Bauart HN 2390.



Wellenabdichtung an einem Radialgebläse mit Stickstoffspülung, Bauart HN 2390.

Wellenabdichtung an einem Spindelbohrkopf, Bauart HN 2390, reibungsoptimiert.

Aufbau und Wirkungsweise der Wellendichtungen

Gehäusewerkstoffe

Standard: 1.4301/Aisi 304

Sonderausführungen: 1.4571/Aisi 316 Ti

Automatenstahl unleg. Tiefziehblech

Aluminium

Sekundärdichtung

Als Sekundärdichtung zwischen PTFE-Dichtlippe und Gehäuse werden folgende Werkstoffe eingesetzt:

Standard: FPM (-20 °C bis +200 °C)

Sonderausführungen: NBR (-30 °C bis +110 °C)

EPDM (-60 °C bis +150 °C) PTFE/Metall-Spezialverbund

(-20 °C bis +250 °C)

Dichtlippe

PTFE-Compound


Standard-Compound HS 21037 für Bauart HN 2390 Standard-Compound HS 21059 für Bauart HN 2580

Für spezielle Betriebsbedingungen stehen weitere Werkstoffvarianten zur Verfügung.

Siehe Werkstofftabelle E Seite 60 – 62.

Bauart HN 2390

Standard

Diese Standardbauart ist hochverschleißfest und druckstabil und deshalb für ein breites Anwendungsspektrum geeignet. Z.B. für Pumpen, Gebläse und Kompressoren.

Dichtlippen-Werkstoff

• PTFE-Compound HS 21037

Merkmale

- Einlippige Ausführung
- Verstärkte Dichtlippe
- Gute Abstützung der Dichtlippe gegen Deformation unter Druck

Eigenschaften

- Gute Dichtfunktion bei druckbeaufschlagten Medien
- Geeignet bei Trockenlauf und geschmiertem Betrieb
- Auch für weiche Wellen geeignet

Einsatzgrenzen⁽³⁾

Max. Umfangsgeschwindigkeit 20 m/s

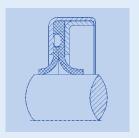
Temperaturbereich -60 °C bis +200 °C

Max. Druckbelastung 10 bar

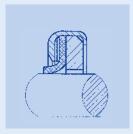
Unterdruck bis 10⁻³ mbar

Mittenversatz ≤ 0,1 mm

Rundlauftoleranz ≤ 0,05 mm


Lagerabmessungen

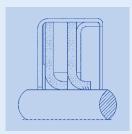
Bezeichnungsbeispiel: Radialwellendichtung mit PTFE-Dichtlippe für Wellendurchmesser $d_1 = 75$, Aufnahmebohrung $d_2 = 100$ und Breite b = 10:


RWDR HN 2390 75 x 100 x 10

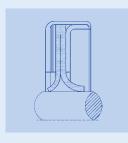
d ₁ mm	d₂ mm	b mm	Teile-Nr.
10	22	7	682.314
12	24	7	681.431
15	30	7	677.558
17	35	7	657.433
18	30	7	674.494
20	30	7	787.280
20	35	7	679.410
22	35	7	654.671
25	35	7	680.311
25	42	7	779.954
25	47	7	659.606
28	40	7	677.329
28	47	7	836.257
30	42	7	786.632
30	47	7	779.962
32	47	8	677.957
35	47	7	779.970
35	50	8	779.032
35	62	8	384.771
40	52	8	682.691
40	55	8	387.266
40	60	8	677.345
40	62	8	779.261
40	65	8	109.380
42	60	8	781.991
42	62	8	785.385
45	62	8	678.899
48	65	8	261.920
50	72	8	779.989
55	72	8	678.007
60	75	8	678.430
60	80	8	677.337
62	80	8	778.826
65	85	8	779.997
70	90	10	678.341
70	100	10	783.390
75	100	10	658.502
80	100	10	680.583
85	110	10	677.612
90	110	10	679.771
90	120	12	682.616
100	120	12	778.834
100	130	12	778.176
105	130	12	677.779
110	130	12	783.811
110	140	12	653.837
120	150	12	676.071

Weitere Sondertypen der Bauart HN 2390

Doppellippe gegensinnig, zur Trennung von zwei Medien, z.B. für Zentrifugen und Dekanter.



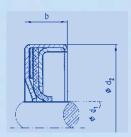
Dichtlippe negativ.
Geringe Toträume für
Lebensmittel- und
Medizintechnik, z. B. für
Mischer, Fleischereimaschinen und Kutter.



Gehäuseloser Wellendichtring. Kleine Baugrößen sowie Sonderabmessungen und geometrien möglich.

Weitere Sondertypen der Bauart HN 2390

Doppellippe gleichsinnig, mit oder ohne hydro-dynamischen Rückförderdrall. Gute Dichtfunktion, höhere Betriebssicherheit, z. B. für Pumpen sowie Schrauben- und Rotationskompressoren.



Mit Schutzlippe für den Einsatz in verschmutzter Umgebung, z.B. auf Baustellen und Einbau Unterflur in Schraubenund Rotationskompressoren.

Hochdruckausführung. Gute Druckstandfestigkeit und Temperaturstabilität, z. B. für Werkzeugmaschinen und Drehdurchführungen.

Sonderbauart HN 2390

Sonderbauart reibungsoptimiert

Gegenüber der Standardausführung der Bauart HN 2390 besitzt die reibungsoptimierte Sondertype einen erheblich reduzierten Reibwert.

Dichtlippen-Werkstoff

• PTFE-Compound HS 21037

Merkmale

- Druckabstützung der Dichtlippe
- Geringe radiale Vorspannung der Dichtlippe

Eigenschaften

- Auch für weiche Wellen geeignet
- Niedrigere Reibwärmeentwicklung
- Für hohe Umfangsgeschwindigkeiten
- Kleine Einbauräume
- Lange Lebensdauer

Einsatzgrenzen⁽¹⁾

Max. Umfangs-

geschwindigkeit 30 m/s

Temperatur-

bereich -60 °C bis +200 °C

Max. Druck-

belastung 3 bar

Mittenversatz ≤ 0,1 mm

Rundlauftoleranz ≤ 0,05 mm

Lagerabmessungen

Bezeichnungsbeispiel: Radialwellendichtung mit PTFE-Dichtlippe für Wellendurchmesser $d_1 = 70$, Aufnahmebohrung $d_2 = 78$ und Breite b = 6:

RWDR HN 2390 Sondertype reibungsoptimiert 70 x 78 x 6

d₁ mm	d₂ mm	b mm	Teile-Nr.
8	18	5	779.210
10	22	7	781.703
12	22	7	681.741
20	28	5	786.357
20	30	5	786.322
22	30	5	781.681
22	35	7	786.888
25	32	5	682.713
30	37	5	682.721
30	40	5	781.711
30	45	7	681.776
35	45	5	781.738
37	47	5	780.375
40	47	5	682.438
40	50	5	780.383
45	55	5	780.367
50	60	5	675.280
50	62	6	780.146
55	63	6	682.748
55	80	8	782.858
60	80	8	205.840
65	75	6	841.110
65	85	8	677.574
70	78	6	682.756
80	100	10	922.692
100	120	10	786.152

Bauart HN 2580

Standard

Standardbauart für drucklose Anwendungen bzw. geringe Überdrücke. Diese Ausführung ist gekennzeichnet durch eine sehr flexible Dichtlippe und eine zusätzliche Schutzlippe. Einsetzbar z.B. für Getriebe, Werkzeugmaschinen und Pumpen.

Standard-Werkstoff

• PTFE-Compound HS 21059

Merkmale

- Dicht- und Schutzlippe einteilig
- Dichtlippe mit Verschleißschuh
- Geringe radiale Vorspannung der Dichtlippe

Eigenschaften

- Auch für weiche Wellen geeignet
- Hohe Flexibilität der Dichtlippe
- Gutes Reibverhalten
- Definierte Laufspurbreite
- Für Trockenlauf und geschmierte Bedingungen geeignet

Einsatzgrenzen⁽¹⁾

Max. Umfangs-

geschwindigkeit 30 m/s

Temperatur-

bereich -60 °C bis +200 °C

Max. Druck-

belastung 0,5 bar

Mittenversatz ≤ 0,2 mm

Rundlauftoleranz ≤ 0,1 mm

Lagerabmessungen

Bezeichnungsbeispiel: Radialwellendichtung mit PTFE-Dichtlippe für Wellendurchmesser $d_1 = 80$, Aufnahmebohrung $d_2 = 100$ und Breite b = 10:

RWDR HN 2580 80 x 100 x 10

d ₁ mm	d ₂ mm	b mm	Teile-Nr.
10	22	7	205.800
12	24	7	205.380
15	30	7	205.810
18	30	7	205.430
20	35	7	205.440
25	42	7	205.450
30	47	7	205.460
35	47	8	205.470
35	50	8	205.480
40	55	8	205.510
40	62	8	205.570
45	62	8	205.590
48	65	8	086.070
50	72	8	205.610
55	72	8	205.620
60	80	8	205.630
65	85	8	205.660
70	90	10	205.680
80	100	10	205.700
85	110	10	205.750
90	110	10	205.770
100	130	12	205.780
110	140	12	205.790

Sondertype reibungsoptimiert

Für geringe Drücke z.B. für Zentrifugen und Gebläse.

Standard-Werkstoff

• PTFE-Compound HS 21059

Merkmale

- Verschleißschuh zur Erhöhung der Lebensdauer
- Sehr flexible Dichtlippe

Eigenschaften

- Auch für weiche Wellen geeignet
- Für hohe Umfangsgeschwindigkeiten
- Niedrige Reibwärmeentwicklung
- Kleine Einbauräume
- Lange Lebensdauer

Einsatzgrenzen⁽¹⁾

Max. Umfangs-

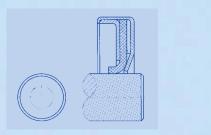
geschwindigkeit 35 m/s

Temperatur-

bereich -60 °C bis +200 °C

Max. Druck-

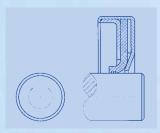
belastung 0,5 bar


Mittenversatz ≤ 0,2 mm

Rundlauftoleranz ≤ 0,1 mm

Hydrodynamischer Rückförderdrall

Bei erhöhten Anforderungen an die Dichtheit von PTFE-Wellendichtungen empfehlen wir einen hydrodynamischen Rückförderdrall auf der Wellenoberfläche oder in der Dichtlippe. Hierbei ist nur eine Drehrichtung der Welle zulässig.


Rückförderdrall auf der Wellenober- Rückförde fläche/Wellenschutzhülse

Der hydrodynamische Rückförderdrall sollte folgende Merkmale aufweisen:

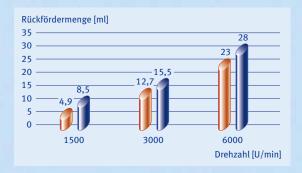
- Drallwinkel zur Planebene 5 10°
- Dralltiefe Rz 3 5 μm
- Der Drall muss gleichmäßig über die gesamte Lauffläche verteilt sein, die Drallriefen müssen dicht beieinander liegen
- Drallriefen in andere Winkelrichtungen sind zu vermeiden

Rückförderdrall in der Dichtlippe

Der hydrodynamische Rückförderdrall wird in der PTFE-Dichtlippe eingebracht. Um einen Schmutzeintrag ins System zu vermeiden und die Dichtheit zu optimieren sollte immer eine zweite Dicht- oder Staublippe verwendet werden.

Rückfördermengen unterschiedlicher Drallarten⁽²⁾

RWDR-Abmessung: 65 x 85 x 8 mm


Dichtlippenwerkstoff: HS 21037 Dichtlippenstärke: 1,0 mm

Ölstand: 20 mm über Wellenunterkante

Ölsorte: SHELL MYRINA 15 W 20

Öltemperatur: 80 °C

Laufzeit: 30 Minuten

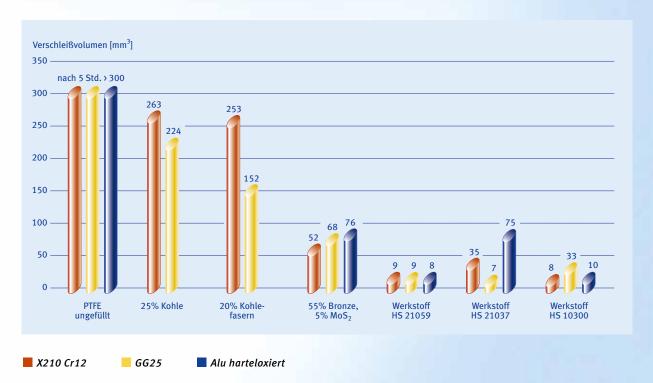
- Drall in Dichtlippe Dralltiefe: 0,2 mm
- Drall in Wellenschutzhülse eingeschliffen,

 $Rz = 3 \ \mu m$, Drallwinkel 10°

Langzeitverschleiß im Trockenlauf (2)

Prüfbedingungen:

Prüfatmosphäre: Luft


 $T = 100 \, {}^{\circ}C$

v = 4 m/s

 $p = 0.42 \text{ N/mm}^2$

 $Rz = 2 \mu m$

Prüfdauer: 100 h

Verlustleistungen und Reibmomente

Bauart HN 2390 Standard und HN 2390

Sondertype reibungsoptimiert(2)

Prüfbedingungen

Medium: Motorenöl 15W-40

Ölstand: Wellenmitte Öltemperatur: 100 °C drucklos

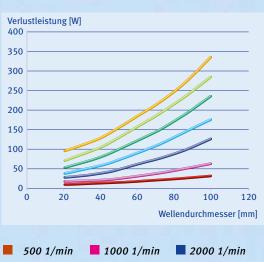
Dichtlippen-Werkstoff: HS 21037 Wellendurchmesser: 50 mm

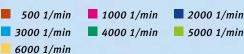
Oberflächenrauigkeit

der Welle: $Rz = 2 bis 3 \mu m$

Bauart HN 2580 Standard (2)

Prüfbedingungen


Medium: Motorenöl 15W-40


Ölstand: Wellenmitte 100 °C drucklos Öltemperatur:

Dichtlippen-Werkstoff: HS 21059

Oberflächenrauigkeit

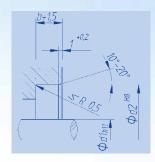
der Welle: $Rz = 2 bis 3 \mu m$

Dynamisches Reibmoment(2)

Bauart HN 2390 Sondertype reibungsoptimiert, Abmessung 15 x 30 x 7, PTFE-Compound HS 21037, Trockenlauf, n = 1500 min⁻¹.

Temperatur = Raumtemperatur/Eigenerwärmung

Dichtlippe 0,5 mm Stärke


Radialkraft⁽²⁾

Ermittlung der Radialkraft nach dem Zweibacken-Messverfahren, Messgerät nach DIN 3761, RWDR Bauart HN 2390, Wellen ø 60 mm, Werkstoff: HS 21037

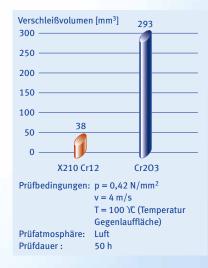
Radialkraft [N] 100 86,25 90 80 70 60 60 50 38.75 40 30 20 10

Konstruktionshinweise

Gestaltung der Aufnahmebohrung

Oberflächenrauigkeit

Ra \leq 1,6 μ m Rz \leq 6,3 μ m Rmax \leq 10 μ m


Gegenlauffläche

PTFE-Wellendichtungen können auf harten und weichen Gegenlaufflächen eingesetzt werden. Das Entscheidungskriterium hierfür liegt in der Auswahl des Dichtlippen-Werkstoffes, in den Druckverhältnissen und Umfangsgeschwindigkeiten.
Grundsätzlich wird eine harte Gegenlauffläche empfohlen.

Der am häufigsten verwendete Wellenwerkstoff ist gehärteter Stahl.
Hiermit werden im Vergleich zu anderen Wellenwerkstoffen und -beschichtungen sehr gute Laufzeiten der Dichtlippe erreicht.

Bei weichen Wellen oder Sonderanwendungen kann auf die Welle eine Oberflächenbeschichtung aufgebracht werden. Da es eine Vielzahl von Beschichtungsarten und -herstellern gibt, ist eine generelle Empfehlung nicht möglich. Cr₂O₃-Beschichtungen auf Edelstahlwellen haben sich jedoch gut bewährt. Durch die wärmeisolierende Oberfläche ist der Verschleiß der Dichtlippe jedoch meistens etwas höher.

Verschleißprüfung Werkstoff HS 21037 auf unterschiedlichen Gegenlaufflächen⁽²⁾

Härte

Die notwendige Härte der Gegenlauffläche ist von vielen Anwendungsparametern abhängig. Bei geringen Anforderungen (geringe Überdrücke und Umfangsgeschwindigkeiten) an den Wellendichtring sind teilweise auch weiche Wellen geeignet.

Dies ist jedoch auch vom verwendeten PTFE-Compound abhängig. Bei höheren Anforderungen und bei Druckbetrieb empfehlen wir eine Härte der Gegenlauffläche ≥ 58 HRC.

Oberflächenbeschaffenheit

Die Oberflächenbeschaffenheit der Gegenlauffläche beeinflusst die Dichtheit und Lebensdauer des Wellendichtringes.

Zur Erzielung einer optimalen Dichtfunktion sollten die empfohlenen
Oberflächenrauigkeiten weitmöglichst eingehalten werden. Bearbeitungsriefen, Kratzer und Lunker
wirken sich negativ auf die Dichtfunktion aus. Wir empfehlen die Welle im Dichtbereich im Einstich zu
schleifen. Eine weitere Möglichkeit
ist das Aufbringen eines hydrodynamischen Rückförderdralls.

Empfohlene Oberflächenrauigkeit der Gegenlauffläche

Ra = $0,2 - 0,63 \mu m$ Rz = $1 - 3 \mu m$ Rmax = $1 - 4 \mu m$

Der Materialanteil M. sollte 50 – 75% betragen, gemessen in einer Schnitttiefe c = 25% des Rz-Wertes, ausgehend von einem Referenzwert von 5%.

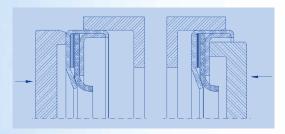
Bei sehr harten Oberflächen, wie z.B. Chromoxyd-Beschichtungen, haben sich Rauigkeiten von Rz = $1-1,5 \mu m$ und Ra $0,15-0,2 \mu m$ bewährt.

Montage

Montagehinweis

PTFE-Wellendichtungen werden über einen Presssitz in die Aufnahmebohrung eingepresst. Wir empfehlen die Dichtringe in die Aufnahmebohrung einzukleben bzw. eine Dichtmasse zu verwenden (z.B. Loctite 601, 641). Durch diese Maßnahme werden bei kritischen Anwendungen mögliche Leckagen über den Außendurchmesser ausgeschlossen.

Richtwerte für die Durchmesser der Einführschrägen

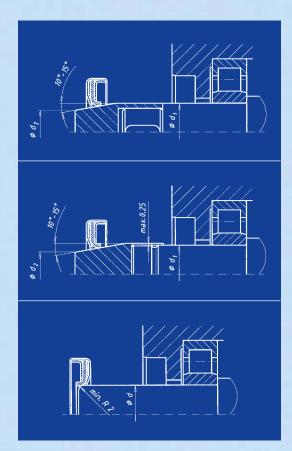

Wellen-Ø d₁[mm]	Konus-Ø d₂ [mm]	
≤ 10	d ₁ - 1,5	
11 - 30	d ₁ - 2	
31 - 60	d ₁ - 3	
61 - 100	d ₁ - 4	
101 - 150	d ₁ - 6	
151 - 200	d ₁ - 7	

Bei der Montage von Wellendichtungen ist die empfindliche PTFE-Dichtlippe unbedingt vor Beschädigungen zu schützen. Als Montagehilfe empfehlen wir die Verwendung eines Aufziehkonus. Bei der Montage des Wellendichtringes in Richtung der geformten Dichtlippe ist in Ausnahmefällen auch ein Radius an der Welle ausreichend.

Die Oberfläche der Montagehilfe muss riefenfrei sein. Alle Kanten sind zu runden. Scharfkantige Übergänge sind zu vermeiden. Bei Montage über Nuten oder Gewinde muss der Montagehilfskonus mit einer dünnwandigen Verlängerung versehen werden. Eine kurzzeitige Überdehnung der PTFE-Dichtlippe während der Montage ist zulässig.

Montagehilfe

Um Deformationen am Wellendichtring zu vermeiden, sind die Dichtungen wie folgt einzupressen.



Weitere Montagehinweise

- Vor der Dichtungsmontage ist die Dichtlippe auf Sauberkeit und Beschädigungen zu prüfen
- Die Dichtlippen dürfen nicht deformiert werden
- Dichtungen können ungeschmiert montiert werden. Andere
 Spezifikationen können mit uns abgestimmt werden

Lagerhinweise

- Empfohlene Lagertemperatur
 -10 °C bis +25 °C; Luftfeuchtigkeit 40 % bis 70 %
- Nicht im direkten Sonnenlicht lagern
- First-in-First-out-Lagersystem
- Schutz der Dichtungen vor Verschmutzung und Deformation

ElringKlinger Kunststofftechnik GmbH | Etzelstraße 10 | D-74321 Bietigheim-Bissingen Fon +49 7142 583-0 | Fax +49 7142 583-200 | sales.ekt@elringklinger.com | www.elringklinger-kunststoff.de

Werk Heidenheim | Badenbergstraße 15 | D-89520 Heidenheim Fon +49 7321 9641-0 | Fax +49 7321 9641-24 | sales.ekt@elringklinger.com | www.elringklinger-kunststoff.de

Werk Mönchengladbach | Hocksteiner Weg 40 | D-41189 Mönchengladbach Fon +49 2166 9590-0 | Fax +49 2166 9590-55 | sales.ektp@elringklinger.com | www.elringklinger-kunststoff.de

ElringKlinger Engineered Plastics (Qingdao) Co., Ltd. | Room 408-409, Building C, Qingdao Int. Finance Plaza 222 Shenzhen Rd, Laoshan District | 266061 Qingdao V.R. China | Fon +86 532 6872 2830 | Fax +86 532 6872 2838 info.ektc@elringklinger.com | www.elringklinger-ep.cn

ElringKlinger Engineered Plastics North America, Inc. | 4971 Golden Parkway | Buford, GA 30518 USA Fon +1 678 730 8190 | Fax +1 770 932 2385 | info.ektu@elringklinger.com | www.elringklinger-ep.com

www.elringklinger-kunststoff.de

elringklinger
Kunststofftechnik

Chirulem Vis Leine eingetragene Marke der Firma Quadram. Die hier gemachten Angaben – aus langjähriger Efrahung und Erkenntnis – erheben keinen Anspruch auf Vollständigkelt. Etwalge Ersatzansprüche aufgrund dieser informationen können nicht anerkannt werden Einbau aller Ersatztelle nur durch geschultes Fachpersonal. Ändeuroman im Jaistunessnaktrum und Fachnischa Änderunsen vonkehalten. Kein Keischt. Bir Durckfahlerale nur durch geschultes Fachpersonal.